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INTRODUCTION

For more than a decade, cointegration techniques have been a dominant force in
applied macroeconomics. Part of their attraction appears to be related to the convie-
tion of many applied researchers that they play a useful role in identifving, with
minimum prior theoretical analysis, long-run economic relationships that are buried
n trended data. Cointegration techniques seem to be ideally matched with the many
economic theories that are couched in long-run equilibrium terms [McKenzie, 1997].
This match applies, a fortiorz, to the analysis of growth issues that have moved to
center stage in macroeconomics over the last ten years after having been on the side-
lines for several decades.

Rather than supplying another survey of cointegration techniques [Muscatelli
and Hurn, 1992], this paper highlights some of the well-known problems with
cointegration analysis in order to provide some perspective on the usefulness of
cointegration techniques in applied economics. To better gauge the relative effective-
ness of cointegration techniques, the paper compares them to traditional econometric
time-series techniques of the autoregressive distributed lag type (ADL) as summa-
rized, for example, by Hendry et al. [1984]. The comparison is based on a number of
simple, easy-to-replicate Monte Carlo experiments with a widely used regression pack-
age (TSP 4.4).

The paper is organized as follows. The next section summarizes the basic idea of
cointegration. The subsequent part details some key problems that, cointegration analy-
sis faces in economic applications. It also offers some numerieal illustrations of these
problems and a comparison to traditional econometric time-series techniques. The
paper ends with a brief summary of the main points and their implications for using
cointegration techniques.

THE ESSENCE OF COINTEGRATION

In what follows, cointegration is discussed independently of the available estima-
tion techniques to focus on the idea of cointegration. Assume for that purpose that
two variables, a variable y and a variable x, are of interest. Both variables are driven
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by a stochastic trend and a random error. To be more specific, let y be determined by

the following two equations,
~ 2 =1,..,Tand
Y, =K, + Ey,t Ey,t NID(O, O'EJ. ), t ,
o=t T, M, ~ NID(O, o'fy), t=1,...T,

where p is a random walk, and where € is a random error. The error term of the
random walk (n ) is assumed independent of the random error €,
Now consider variable x, which is driven, in complete analogy toy, by the follow-

ing two model equations,

* = pL + Ex,t ExJN NID(Oa O-:y): t = 1, wreey T and

H

Ro= T, M, ~ NID(O, fo ), t=1,...., T,

i i or term of the
where p is a random walk, and where ¢ 15 a random error. The err

random walk (n ) is independent of the random error € . ‘

It is apparent that y and x follow stochastic trends. Both varlables. are non-sta-
tionary in levels but stationary in first differences or I(1). The tw'o variables y andaf
are cointegrated if the two random walk errors, m, and m_, are hne’aﬂy dependenf:,
that is, if their correlation coefficient is unity. In practical terms, .1f the stoc‘hastlc:
trend innovation for variable x is « and the stochastic trend innovation for va?lable y
is a linear function of &, then x and y are cointegrated. Another way of e}q‘)ressmg this
is to say that the two random walk errors have a common facltor (). Linear depen-
dence or a common factor among the two random errors implies that the rm?rs (col-
amns) of the variance-covariance matrix of the random walks - and p are hnearl_y
dependent. Hence, the covariance matrix is not of full rank. As is well kl‘.lOWFl, thls
fact can be used to estimate the linear relationship between x and y, which is also

the cointegrating vector for x and y.
knovgrsl :i extensionﬁonsi%ier the case where the stochastic trend mod.ei for both y
and x allows for a drift in the random walk that is driving the stochastic trend. The

model for y could then be written as
Y, =M, +E e, ~ NID(0, a?), t=1,...,7,

where the stochastic trend component is specified as
P‘;zp“tq"'i?’:—l “q;NID(O, 0'“2), t=1,...,T
B, = ;3;1 + £, £, ~ NID(O, o 2), t=1,..,T.

In this case, 3 is the drift parameter of the random walk . It is assumed to develop

over time as a random walk itself. An analogous set of equations can be specified for

X.
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This case differs from the earlier one in that both ¥ and x are integrated to order
two rather than one. The first differences of x and y are cointegrated if the error
terms that are driving the drift parameters in the two models are linearly dependent;
that is, if they have a common factor. This, in turn, implies that the variance-covari-
ance matrix of the error terms driving the drift parameters is of less than full rank.

The above description can be extended to more than two variables. Irrespective of
the number of variables involved, cointegration remains to be tied to linear restric-
tions (common factors) among the random errors that drive the stochastic trends.
However, what is different from the case of two variables is the number of linear
dependencies (common factors) that may arise among the error terms. In the case of
three variables, there may be two linear dependencies (common factors) and, there-
fore, two cointegrating vectors, and so forth for systems with more variables.

Further extensions of the basic model are possible to allow for cointegration of
seasonal or cyclical components, as described, inter alia, by Engle et al. {1989] and
Boswijk and Franses [1995]. Cointegration has also been éxtended to non-linear rela-
tionships [Granger et al., 1997]. In all cases, however, cointegration reduces to com-
mon factors in the error terms that drive the respective stochastic processes.

What does the knowledge of cointegration and cointegrating vectors provide us
with? First, the estimation of a multivariate system of cointegrated variables can
make use of the reduced rank of the variance-covariance matrix, and will therefore
raise the efficiency of the parameter estimates. Second, if one has predicted one of the
variables in a cointegrated system, then the long-run trend values of the other vari-
ables can be derived using the cointegrating vector. But there is also something that
cointegration technigues cannot provide. Since cointegration is a purely statistical -
concept, tied to common factors of stochastic disturbances, the technique does not
guarantee that any of the common factors that may exist among the variables are
economically meaningful.' As a corollary, cointegration does not, by definition, imply
that a component of the underlying economic structure has been identified.

SOME PRACTICAL LIMITATIONS OF COINTEGRATION ANALYSIS
Cointegration Analysis When a Relationship is Spurious

Hardly any paper that uses cointegration techniques for empirical exploration
fails to mention why they use the cointegration methodology: to avoid spurious re-
gression results. That has been the key statistical motivation behind cointegration
analysis since its inception. In practical applications, however, not all commonly used
cointegration techniques have a unique edge over standard regression techniques in
identifying spurious economic relatiohships. To illustrate this point, consider three
independent random walks, X, ¥, and Z, with 99 observations each.? By their con-
struction, any association amcng them is purely spurious.

Let us assume that one approaches the association between X, Y, and Z in a tradi-
tional manner by starting out with a fourth-order antoregressive-distributed lag model
(ADL) with X as the dependent variable and tests this model down to a more parsimo-
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TABLE 1
Unit Root Fests for Levels of Variables

X Y Z

Augmented Weighted-Symmetric® 0.776 (.135 0.639
Augmented Dickey-Fuller? 0.018 0313 0003
Phillips-Perronb: ¢ 0.187 0198  0.036

Probability values (p-values) are provided for the null hypothesis
of & unit root. See Note 2 in the text for the construction of the

variables.
a. See Pantula et al. [1994].
b. p-values come from MacKinnon [1994].

c. Phillips and Perron {1988].

nious form [Gilbert, 1986; 1989].2 One may arrive at a specification such as the fol-

lowing,

X =-0734— 0.075Y, +0200Z — 0.377Z,_ +0.233%,_,+ 0.878X, |
(-14) (-15) (1.87)  (-2.58) (2.17)  (16.96)

R? = 0.9636 p-values: td = 0.82, bgl = .65, bgd = .92, chow =0.19, white = 0.80, reset = .07

where t-values are reported in parentheses below the estimated coefficients and where
probability values (p-values) are provided for all statistical adequacy tests.* The equa-
tion shows a surprisingly good statistical fit, with high R? and acceptable test statis-
- tics. In addition, the equation is dynamically stable. However, the equation lacks
long-run economic content because the implied long-run multipliers (4X/9Z = 0.461
and aX/3Y = —0.617) have t-values of 1.06 and — 1.48, respectively, and are, therefore,
not statistically significant at the five percent level.®
Now consider a typical cointegration analysis of the relation between X, Y, and Z.
As is fairly standard practice, the analysis commences with unit root tests for all
three variables. The results are given in Table 1. All three unit root tests indicate that
variable Y is (15, but the evidence on the other two variables is less clear. Such
ambiguity is fairly common for unit root tests: The analysis proceeds on the assump-
tion that all three variables are I{1) as suggested by the first test reported in Table 1,
which is arguably the most reliable of the three unit root tests [Pantula et al., 1994].
The tests for cointegration are next. The Engle-Granger procedure [Engle and
Cranger, 1987] cannot reject the null hypothesis of no-cointegration among the three
variables at any common level of statistical significance.” This is the result that one
would expeEt from a cointegration test on three independent random walks. By con-
trast, the Johansen [1991] cointegration trace test rejects the null hypothesis of zero
rank (- = 0) with a p-value equal to 0.006 and the null hypothesis of rank one or less
(r = 1) with a p-value equal to 0.023.% Even testing at the one percent level results in
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one statistically significant cointegrating vector, not what is expected from a very
popular cointegration test. Yet these results are not atypical.? Repeating the above
tests 1,000 times confirms that, at the five percent level of significance, the Johansen
trace test rejects the null hypothesis of zero cointegrating vectors in about 17 percent
of all cases. This is not much different from the results that one can obtain by testing
for statistically significant long-run multipliers within the context of an ADL regres-
sion. At the five percent level, an unrestricted fourth-order ADL finds statistically
significant long-run coefficients in about 20 percent of all cases.’® The Engle-Granger
procedure, by contrast, does significantly better: at the five percent level, it rejects
the null of no-cointegration in less than four percent of all cases. Hence, when a spu-
rious relationship actually exists, the Engle-Granger procedure appears to be quite
good at identifying it. It is appreciably better than either the more popular Johansen
cointegration technique or the traditional approach that relies on an ADL model,

Cointegration Analysis When a Meaningful Long-Run Relationship Exists

Avoiding a type I error, thatis finding cointegration when the relationship among
the economic variables under consideration is in fact spurious, is only one issue for
cointegration techniques. The companion issue is to avoid a type I error, that is find-
ing no cointegration when, in fact, a meaningful relationship exists among the vari-
ables considered. It is suggested that neither the Johansen nor the Engle-Granger
technique performs significantly better in this respect than standard regression tech-
niques based on the application of an ADL model. The relative performance of these
techniques is illustrated for three potential problem cases of practical relevance: omit-
ted variables, structural change, and simultaneous equations bias.

The Problem of Omitted Variables. By now, it is well established that the
success rate of finding a cointegrating relationship, even when one is known to exist,
depends critically on what variables are included or excluded from the analysis
[Melnick, 1995]. The early belief among practitioners that cointegration analysis some-
how provides an easy way of finding meaningful long-run economic relationships with-
out much need for economie theory has turned out to be ill founded. Careful ecenomic
theorizing and familiarity with the data remain prerequisites for sensible results,
whether one uses cointegration or traditional regression techniques.

If specification uncertainty is a problem for the relationship that is being mod-
eled, one typically faces the potential for an omitted variables problem. It is sug-
gested that traditional regression techniques offer a more constructive modeling en-
vironment in this situation than cointegration techniques, To illustrate this point,
consider the relationship W=5+ 15X+ 05X+ ¢, which is non-linear in variable
X Assume that the non-linearity in X is ignored initially. Starting with a fourth-
order ADL and testing down to a more parsimonious form, leads to the equation

W,=154+0940 W, - 0.035W,_, +130X, - 203X  +0.907X
(2.0) (148)  (-0.54) (B.07) (35 (22
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R? = 0.8861 p-values; td = .81, bgl = .40, bg4 = .56, chow = .00, white = .00, resef = .97

where the implied long-run multiplier dW/aX is equal to 1.87. With a p-value of 0.054,
this long-run multiplier is not significantly different from zero at the five percent
level. In addition, the equation does not pass standard tests for structural stability
and heteroskedasticity. Overall, this equation would be unacceptable on the basis of
standard regression techniques.

Cointegration tests for the variables W and X lead to p-values of 0.707 for the
Engle-Granger test and 0.059 for Johansen’s trace test. Hence, both tests reject
cointegration at the five percent level. However, no guidance is offered by either test
as to what could be wrong with the equation. Is there truly no economically meaning-
ful relationship between W and X or is the relationship only misspecified?

Repeating the above experiments 1,000 times, one finds the following results.
There is only a five percent chance that an unrestricted fourth-order ADL will not be
rejected for the mis-specified model by either the test statistics for heteroskedasticity
or structural stability at the five percent level or better. If one’s work is guided by
these statistical adequacy tests, there is little chance that one would accept a wrong
model. The results of the Johansen technique are less convincing, In about 43 percent
of all cases, the Johansen trace test rejects the null hypothesis of no-cointegration at
the five percent level of significance. The equivalent rejection rate for the Engle-
Granger technique is 17 percent.

How is the fact to be interpreted that cointegration techniques identify with a
non-negligible probability a cointegrating vector (CIV) even when there is an omitted
variable problem? On the positive side, finding cointegration correctly suggests that a
long-run relationship exists. On the negative side, the researcher is likely to accept a
numerically wrong CIV if one assumes some degree of collinearity exists among the
included and excluded variables.

Since omitted variables may play an important role for cointegration analysis,
any researcher employing these techniques would be well advised to spend sufficient
time to fully develop the underlying economic theory and to consider possible devia-
tions from it before embarking on cointegration tests.!? It certainly makes little sense
to approach cointegration analysis similar to a short-run VAR-based forecasting ex-
ercise, that is, with only a minimal amount of economic theorizing.

The Problem of Structural Change. To detect commeon factors among the sto-
chastic trends of variables requires a sufficient number of observations so the sto-
chastic trends can reveal their unique characteristics. This requirement entails a
fundamental problem for cointegration analysis in economics. The longer the time
horizon that is considered, the higher is the probability that the underlying economic
structure changes and the linear relationship among the trend innovations is likely
to change over time. As a consequence, no unique CIV will emerge. The implications
for cointegration analysis are rather unfavorable. As the sample is expanded toward
the past, one comes closer to the ideal testing environment for cointegration analysis.
Yet at the same time, the problem of structural change emerges, which in turn leads
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to a breakdown of cointegration analysis. In other words, the facts of economic reality
fundamentally conflict with the statistical requirements of cointegration analysis, 13

This fundamental contradiction is expressed in the large literature on structural
breaks and how to handle them in cointegration analysis. Starting from early work by
Perron [1989], and Hamilton [1989] to more recent contributions by Campos et al.
(1996], Gregory et al. [1996], Gregory and Hansen [1996], and Perron [1997], the
problem of structural breaks has been subjected to intense scrutiny. Although the
work in this area displays considerable ingenuity, it is generally based on the ag-
sumption that structural change is a rare occurrence in a world that is inherently
stable. Experience in applied economics suggests the contrary: structural change is a
permanent and key feature of economic reality. Not surprisingly, the work on
cointegration and structural change appears to be moving ever closer to the same
types of techniques, such as rolling regressions, that are commongplace in traditional
time series econometrics. However, accepting the identification of cointegrating re-
gressions that may only hold for certain, and possibly rather short, subsets of the
data, effectively discards the spirit and basic idea of cointegration, which is to accept
only relationships that survive the test of time. In that case, cointegration is starting
to compete with methodologies that may be better suited to the type of structural
change that is so common in economic applications.’®

It may be noted that long time series cause a problem for cointegration analysis
in applied economics not only because parameters vary, but also because data defini-
tions are more likely to change. Such changes in definitions are not surprising. They
reflect the changes to the structure of the economy.

To illustrate the problem of structural change, consider the following relationship
between W and X. For observations 2 to 30 the equation is assumed tobe W=5+ 1.5
X + €, where X is the random walk defined earlier and where the innovation €,is the
one underlying the construction of random walk ¥ (Note 2). For observations 31 to
100, the equation is specified as W=8+ 12X + €. There is a structural break in the
equation at observation 31 that changes both the intercept and the slope parameter.

Starting from a fourth-order ADL and testing down to a simpler form results in
the equation :

W,=171+0453 W, +0.290 W, ,+ 1.53X, - 0.950 X, ~ 0.220X,
(32) (52 (3.9) (11.0) (5.0 (-2.4)

R?=0.9711 p-values: td = .15, bgl = .76, bg4 = .39, chow = .19, white = .05, reset = .01

where the implied long-run multiplier 9W/aX is equal to 1.40, with associated p-value
equal to 0.00. A statistically significant long-run multipler exists, but since the equa-
tion does not pass all statistical adeguacy tests, the equation is not acceptable based
on traditional regression metnodology.

Consider now the cointegration methodology. Cointegration tests on W and X
cannot reject the null hypothesis of ne-cointegration for either the Engle-Granger (p-
value = 0.80) or the Johansen technique (p-value = 0.17) at the five percent level of
significance. Again, the standard cointegration methodology does not indicate a lack
of cointegration.
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The above experiment is repeated 1,000 times to get a better idea of how the
structural break affects traditional regression methodology versus cointegration analy-
sis. For the particular example at hand, the Engle-Granger and Johansen techniques
reject the null hypothesis of no-cointegration at the five percent level 27 and 76 per-
cent of the times, respectively. For an unrestricted fourth-order ADL, a statistically
significant long-run multiplier is found in 93 percent of all cases. However, at least
one of the statistical adequacy tests signal rejection of the model assumptions in all
cases at the five percent level of significance.

The Monte Carlo evidence supports earlier work that a structural break can fairly
easily lead to the conclusion of no-cointegration for the Engle-Granger methodology.
By contrast, the Johansen technique appears to be less affected by a structural break.
How to evaluate this empirical evidence is not clear cut. The finding of no-cointegration
is undesirable because there is a meaningful underlying relationship, albeit one with
a structural break, However, rejection of the null of no-coinfegration is also undesir-
able because it leaves the researcher with a cointegrating vector that is not correct
and with no indication that something may be wrong with it.

The traditional regression techniques provide a more useful outcome. They cor-
rectly identify the existence of a statistically significant long-run relationship. Yet, at
the same time, they signal that the equation has a statistical problem, which forces
the conscientious researcher to investigate further. In a sense then, the traditional
approach offers a more constructive modeling environment than standard cointegration

techniques.

The Problem of Simultaneity. If the variables that form part of the cointegration
analysis are simultaneously determined in the sense of the Cowles Commission, then
cointegration analysis may have little to offer relative to such venerable techniques
as two-stage least squares. In fact, Hsiao [1997a; 1997b} has shown that in the con-
text of dynamie simultaneous equation systems and no identification problem one
can all but ignore the time series properties of the variables and instead use the
received techniques without being worse off.

To illustrate this point, consider the following linear dynamic simultaneous equa-
tions system consisting of two behavioral equations (demand and supply, respectively)
and an equilibrium condition:

@=1-05P +05Y,+27Z +0.2Q,  +u,
@=1+05P,+X +08Q,  +v,

Q=@ =C,

where the variables Y, Z, and X are random walks defined earlier, uz and v are stan-
dard normal random variables,’® and where @ and P are generated on the basis of the
associated reduced-form equations.

Cointegration technigues are examined for this system under two alternative as-
sumptions: {a) the structure of the system outside of its dynamics is known to the
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TABLE 2
Long-Run Parameter Estimates for
Simultaneous Equations System, One Equation at a Time

Long-Run Parameters

Demand Function P Y Z
true parameters -0.63 0.63 2.50
EG estimate -0.58 .48 2.54
JOH estimate - CIV-1 -3.69 0.53 2.48

CIV-2 0.47 0.89 1.94
28LS - 20d grder ADL -0.61 0.64 2.50
OLS - 2 grder ADL -0.55 0.59 2.51

Supply Function P X
true parameters 2.50 5.00
EG estimate? 0.38 2.17
JOH estimate 2.31 4.61
2818 - 20d grder ADL 2.11 4.43
OLS - 204 prder ADL 1.80 4.11

All parameter estimates are based on the same data set and are assumed te be on the
right side of the equal sign, with @ being on the left side. EG stands for the Engle and
Granger [1987] technique. JOH represents the method used by Johansen [1991]. CIV
stands for cointegrating vector, 2818 for two-stage least squares, OLS for ordinary
least squares, and ADL for autoregressive distributed lag. See Note 2 for the construc-
tion of variables X, Y, Z.

a. Not significant at the 5 percent level.

researcher and (b) nothing is known to the researcher outside of the variables that
play a rele in the system. It must be noted that the traditional Cowles Commission
approach and the work of Hsiao [1997a; 1997b] assume that the structure of the sys-
tem is known, at least approximately. Hence, assumption (b) is irrelevant for the
traditional approach.”

Table 2 reports the results of the Engle-Granger and Johansen cointegration tests
on the variables of each equation, but excluding the lagged dependent variable. At
the five percent level of significance, the Engle-Granger technique identifies a
cointegrating vector only for the demand function. The Johansen technique finds
multiple cointegrating vectors for the demand function. Both OLS and 2SLS esti-
mates are based on an unrestricted second-order ADL, true to the assumption that
the dynamics of the equations are unknown. Both techniques identify the existence of
long-run parameters at better than the one percent level for all variables. Comparing
the estimated long-run parameters to the true ones, it is apparent that both OLS and
the Engle-Granger technique have the largest bias.® The first cointegrating vector of
the Johansen technique and the 28LS method tend to provide better long-run param-
eter estimates.

The above experiments are repeated 1,000 times. For each replication, the ran-
dom walks X, ¥, and Z and the disturbance terms z and v are created from a new set
of innovations. At the five percent level of significance, the Engle-Granger technique
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identifies a CIV for the demand function in 74.4 percent of all cases. This contrasts
with 93.6 percent for the Johansen technique. For the supply function, the Engle-
Granger technique finds a CIV in only 2 percent of all cases, while the Johansen
technique does so in 99.3 percent of all cases. In 44 percent of all cases, the Johansen
technique finds a second CIV for the demand function. For the supply function the
percentage is about 23 percent. 9SLS establishes the existence of a long-run multi-
plier for each of the five variables in about 92 to 93 percent of all cases when the test
is conducted at the five percent level.

What is perhaps most interesting for these experiments is a comparison of how
close the long-run parameter estimates of the Johansen technique and 25LS are to
their true values. For each replication, the better of the two estimation techniques is
identified on the basis of the absolute deviation of the long-run parameter estimate
from its true value, summed over all five parameters. The 28LS technique outper-
forms the Johansen technigue by this criterion for 69.3 percent of the 1,000 replica-
tions. These results support the point made by Hsiao [1997b}: if there is no specifica-
tion uncertainty with regard to which variables enter the equations to be estimated,
there is little to recommend cointegration techniques over a dynamic version of 25LS.

According to assumption (b), specification uncertainty implies that the researcher
knows the variables that enter the system of equations but does not want to assign
the variables to the structural equations or to distinguish between endogenous and
exogenous variables. A fairly common approach to cointegration testing in this set-
ting is to use all variables {§, P, X, Y, Z) in the cointegration analysis. The results of
such an exercise for the variables used at the beginning of this section are presented
in Table 3. Again, multiple CIVs arise for the Johansen technique, none with any
obvious economic interpretation. This suggests the existence of an identification prob-
lem. The way to proceed in this case would be to impose and test identifying restric-
tions as discussed, inter alia, by Johansen [1995] and Boswijk [1996]. It requires no
further discussion that economic theory is needed to deliver these identifying restric-
tions. Hence, it is again obvious that cointegration analysis needs a sufficient founda-
tion in terms of economic theory to make economic sense.

A simple way to produce identification restrictions may sometimes be to impose
exclusion restrictions covering either single or multiple variables.’® Recently, Davidson
[1998! has taken the idea of exclusion restrictions and reformulated it as a search for
irreducible cointegrating relations (ICs). From a practical point of view, such a search
implies testing all possible subsets of variables for cointegration. All subsets of vari-
ables that cointegrate belong to the set of ICs. All supersets that also cointegrate are
discarded as are all variable sets that do not cointegrate. As discussed in detail in
Davidson [1998], this simple elimination procedure can potentially identify struc-
tural economic relationships and other useful relationships, such as reduced forms.
This is borfie out for the given data set (Table 3). Davidson’s [1998] methodology has
little trouble identifying the two structural equations and the two corresponding re-
duced-form equations in the current data. Thisis a notable advance beyond the unre-
stricted and uninterpretable CIVs identified by the Johansen technique. However, it
needs to be kept in mind that Davidson’s [1998] methodology is not immune to the
problems discussed earlier. The omission of important variables in the original set of

COINTEGRATION VERSUS TRADITIONAL ECONOMETRIC TECHNIQUES 479

TABLE 3
Cointegrating Vectors for Simultaneous Equations System
(All Variables Used Simultaneously)

Q P X Y A
True Parameters
demand function 1 -0.63 0.63 2.50
supply function 1 2.50 5.00 .
reduced form P 1 -1.60 0.20 0.80
reduced form @ 1 1.00 0.50 200
Estimates
EG estimate 1 -0.47 0.27 0.43 2.38
JOI estimate - CIV-1 1 -2.47 -2.96 0.79 4.32
CIV-2 1 -0.32 0.50 0.51 2.18
ICs-1 1 -0.62 0.58 2.44
-2 1 2.08 4.44
-3 1 -1.65 0.21 .91
-4 1 1.01 0.45 1.89

All parameter estimates are based on the same data set as those of Table 2. A 1 for P or @ identifies which
of the two variables is moved to the left side of the equal sign. All other variables (parameters) are
assumed %0 be on the right side of the equation to match Table 2 and the simultaneous equations system
provided in the text, EG stands for the Engle and Granger [1987] technique. JOH represents the methed
used by Johansen {1991]. CIV stands for cointegrating vector, ICs stands for Irreducible Cointegrating
relations, a term introduced by Davidson [1998] and described in the text. The irreducible form estimates
are performed with the statistical package GAUSS using the program referenced in Davidson [1998]. See
Note 2 for the construction of variables X, ¥, and Z.

variables, structural change, and collinearity among the set of variables will nega-
tively affect the methodology, as they will all cointegration techniques.

SUMMARY AND CONCLUSIONS

The purpose of this paper has been to provide some perspective on the usefuiness
of cointegration techniques in applied economics. This has been accomplished by (1)
reviewing the weak spots of cointegration analysis and (2) comparing the performance
of two popular cointegration techniques to the traditional autoregressive distributed
lag model.

The comparison of cointegration and traditional econometric time-series tech-
niques suggests two conclusions. First, traditional econometric techniques have not
become completely obsolete for trended data as it is sometimes suggested. In fact, for
many applications they offer a sensible alternative to cointegration techniques.® Sec-
ond, cointegration techniques need to be applied with great care. This latter conclu-
sion has at least three dimensions. First, cointegration analysis is not a substitute for
carefully developing the underlying economic theory. In particular, appreaching
cointegration analysis with the type of minimalist economic theory that may be suffi-
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cient for short-run VAR forecasts is likely to lead to an omitted variables problem,
multiple cointegrating vectors, and incorrect inferences. Second, every researcher
needs to be aware of the fact that standard cointegration techniques do not work very
well for the long time series for which they are intended because of the ever present
possibility of structural change in the economic environment. Third, if one or more
cointegrating vectors are identified, it is highly desirable to test for identifying and/or
exclusion restrictions. The procedure developed by Davidson f1998] appears to be
well suited for many practical applications because it allows one to derive, in a sys-
tematic manner, cointegrating vectors with potentially sensible economic interpreta-

tions.

NOTES

The author wishes to thank the Faculty Research and Creative Activity Commitiee at Middle Ten-
nessee State University for financial support.

1. McNew and Fackler [1997] present a recent example in which eointegration has no obvious relation
to economic theory, .

9 The series are created in TSP 4.4 for ohservations 2 to 100, with sample observation 1 being zero for
all three series. Standard pormal random variables are used for their construction. The random
walks X, Y, and Z are generated for the sample 2 to 100, with the following seeds for the respective
error terms (starting with cbservation 1): e, = 12360, €, = 87642, ¢, = 64934.

3. It is assumed that a simple regression in levels will not he seriously entertained. Such an exercise
would lead to a high R? (0.8323) but highly significant statistics for autocorrelation, structural break,
and functional form tests.

4 The abbreviation fd stands for a likelihcod ratio test of the exclusion restrictions relative to a fourth-
order ADL; bg! and bg4 represent the Breusch-Godfrey test [Godfrey, 1978] for autocorrelation with
one and four lags, respectively; chow identifies Chow’s [1960] test for structural break at the sample
midpeint; white is White's [1980) test for heteroskedasticity, and reset stands for Ramsey's [1969]
test for functional form misspecification,

5, Asymptotic t-values are calculated by the delta method. The qualitative conclusions do not change if
one does not test down the fourth-order ADL to a more parsimonious form but caleulates asymptotic
t-values for the equation containing all four lags.

6. Unit root tests are repeated on the first differences of X, Y, and Z and reject the null of non-stationarity
at all reasonable levels of statistical significance and for all three variables. .

7. The associated p-value is 0.345 with two lags added.

8.  The Johansen estimation procedure is the one hard-programmed in TSP 4.4. An AIC rule is used for
the optimal lag length, finite sample corrections are employed according to Gregory (1994, and p-
values are interpolated from Osterwald-Lenum [1992].

9. Very similar results can be found in Gonzalo and Lee [1998].

10. Fewer significant eases are typically found when the ADL is tested down to a more parsimonious
form.

11. Note 2 discusses the construction of variable X and innovation €,

12. Consider in this vein the discussion by Pesaran and Smith [19951.

13. Prima facie, it would appear that there are fewer such conflicts in the natural sciences where the
vast majority of relationships analyzed do not change over time.

14. See Maddala and Kim [1998, Chapter 13] for a recent survey and assessment of the work on
cointegration and structural change.

15. Such a methedelogy is structural time series modeling, also known as unobserved components model-
ing {Harvey 1989; 1997].

16. Random variable u is generated with seed 2223 and random variable v with seed 33322 in TSP 4.4

17. Ifthe model specification is only approximately known, the traditional approach would use (1) statis-
tical adequacy tests, (2) tests for the existence of economically sensibie long-run multipliers, and (3}
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deterministic and/or stochastic model simulations of the type described by Fair [1994)] to identify the
model structure.
18. The hias of the Engle-Granger technique was first pointed out in Banerjee et al. [1986].
19. There may be a problem with exclusion restrictions when some or all variahles are highly collinear.
20. This conclusion is similar to that suggested by Pesaran and Smith [1398].
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