Long Cycles: A New Look At the
Evidence
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Recent economic misfortunes have re-
newed interest in the possibility of long 20--50
year cycles in economic activity. Interestingly
enough, the belief in long waves has itself
undergone a cycle of acceptance, rejection
and resurrection.' Supporters now include
Rostow (1978) and Forrester (1978) on the
50th anniversary of the Great Depression.
But do long cycles really exist or are they
merely random fluctuations in economic
activity? Commonsense suggests that econo-
mists have disagreed about Iong waves
because reliable data series are too short to
detect them with much confidence [Samu-
elson, 1979], and so any deep recession tends
to resurrect the theory. However, there is
evidence to suppert the view that disagree-
ments are due in particular, to differences in
(a) scholarly precedures for defining and
isolating long cycles in data and (b) interpre-
tations of statistical tests performed on the
resulting data. When the influence of these
differences is corrected a fairly consistent
pattern of empirical findings tends to emerge.
This pattern does not support the long-cycle
hypothesis. Rather, it is consistent with a
model in which the deviations of growth rates
from their historical average are a random
and uncorrelated sequence of shocks, ie.,
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' Acceptance: Kuznets (1930), Schumpeter, Lewis and
(FLeary, Abrdmoviiz. Rejection: Adelman, Granger,
Hatanaka and Howrey, Howrey {1968). Resurrection:
Harkness, Poulson and Dowling, Cargill.
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what in spectral language has come to be
called a “white noise™ process.

Summary Survey of Long Cycle Studies

Kondratieff found evidence for 50 year
periods between major peaks in the nine-year
moving averages of annual prices [Garvey].
Averaging was used to suppress short-cycle
disturbances. Although Kondratieff’s conclu-
sions were challenged and he was unable to
provide a convincing theory for his waves,
Schumpeter made them part of his famous
three-cycle schema in the 1930s. At about the
same time Kuznets [1930] was finding
approximate 20 year periods between major
peaks in the 10-year moving averages of
annual growth rates of many economic time
series. Later, Lewis and (’Leary found simi-
lar major-peak periods in the unaveraged
deviations from a logarithmic trend of data in

several nations. Because these 20-year periods
appeared in a variety of data and data forms

(i.e., growth rates and deviations from trend)
they were thought to be induced by some
common force, such as demographic waves
[Kuznets, 1961; Abramovitz]. But most of
these classical studies used moving averages,
and all of them ignored minor ripples in the
averaged data while concentrating on major
peaks. Moving averages tend to lengthen any
underlying cycle pattern in the unaveraged
data [Howrey, 1968; Fishman; Klotz, 1973],
while the practice of ignoring ripples allows
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one to find major peaks even in random-walk
processes [Klotz, 1977].

Analysts turned to spectral methods to
avoid the distortions caused by the classical
methods.? Adelman found no statistically
significant peaks in the U.S. spectra at the
long-cycle frequencies. She analyzed unaver-
aged deviations of annual time series from
their logarithmic trend. Hatanaka and
Howrey refined Adelman’s methods and
reached the same conclusion. The typical
spectral shape resulting from these and other
studies indicated that cycle amplitude
increased smoothly with length over the spec-
trum of cycles examined. Granger pointed out
that this shape is consistent with a first-order
Markov process in the deviations, D,, of data,
Y, from their logarithmic trend: log ¥, — @ +
bt + D, where “a” and “b” are constants of
the trend formula, ¢ is time, B, = r D, | + u,
r = 1.0 is the Markov parameter, and #, is a
random, serially uncorrelated sequence of
shocks (ie., u, is a “white noise” process). A
first-order process leaves no place for cycles
because their generation requires at least a
second-order process in the D, [Baumol}.

However, the question remains whether the
typical shape comes from a higher order
process whose spectrum, in certain special
cases, might resemble that of a first-order
process. A growth rate transformation, essen-
tially & log Y,, is sensitive for picking up
significant departures of D, from the random
walk case D, = r D,_; + u, r = 1.0. This case
implies A log Y; = & + #,, so the growth rate
of ¥, equals a constant b plus u, which reflects
shocks. The specirum of the rates is a
constant across all frequencies in this case

*Spectral analysis decomposes the total variance of a
time series into a spectrum of cycles of differing wave-
lengths (the inverse of their frequency). Long and short
waves can then be examined separately without recourse
to moving-average or ripple-suppression methods. Also,
spectral analysis can detect periodic, but irregular, fluc-
tuations: they would cause peaks in the spectrum at the
frequency of the period in guestion and at its harmonic
frequencies.

[Fishman]. Significant departures of an esti-
mated growth rate spectrum from a constant
level implies that the D, do not follow a
random walk. Employing this reasoning
Howrey [1968] found seemingly significant
peaks in the growth rate spectra of several
macroeconomic time series. But the peaks
were at frequencies corresponding to 10-14
year cycles. Howrey showed that moving
averages would transfer these peaks to the
frequency range corresponding to 20 year
waves, thus creating long cycles in the aver-
ages of growth rates examined in classical
studies.

Although this “first round” of spectral
studies tended to reject long cycles as a statis-
tical artifact, a second round guickly followed
which seemed to resurrect the idea. Harkness
found peaks in 40 of 44 growth rate spectra at
long-cycle frequencies. But the peaks were
not tested for significance versus the corre-
sponding spectrum average, and their abun-
dance is not convincing evidence for long
waves: one would expect to find almost 40
peaks even if all 44 data serics were indepen-
dent “white noise” processes. Harkness used
Parzen weights to smooth each spectrum.
This would cause the spectrum of even a
white noise process to average six frequency
bands between peaks, implying that each
frequency band estimate has a .167 chance of
being a peak.’ Because Harkness estimated
five frequencies in the long-cycle range for
each of 44 spectra we would expect .167 x
5 x 44 = 37 peaks even if the spectra were of
44 independent white noise processes. Thus,

'With Parzen weights and i = 1, 2,..., M lags,
adjacent point estimates of the spectrum, denoted by f;
and f_,, have correlation R, = (.8. Once removed points
have correlation R, = 0.4 [Fishman, p. 100]. Supposing
these two correlations imply that a second-order process
such as f; + « f, + b fi» = u; describes the spectrum
estimates, then the observed spectrum wili exhibit an
average peak-1o-peak distance of P = 2w /cos™' B, where
B=[B —{1 +a)1/2(1 + a + b). {Sec Howrey (1968)
for a discussion of peak-to-peak periods.) With R, and R,

as above, regression formulas [Kendali} imply a = —1.33
and # = .67. S0 B = 0.5 and P = 6.0 in this Parzen case.
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Harkness’ finding of 40 peaks is weak‘_

evidence in favor of long cycles.

Although Harkness did not compute the
statistical significance of his peaks relative to
their respective spectrum average, Poulson
and Dowling {1974] followed with a study
that did.* They estimated spectra at 30
frequencies, five in the long cycle range of
10+ vears, for 25 annual time series. They
discovered that eight peaks in the long cycle
range exceeded the 90 percent confidence
bound placed about their respective spectral
averages, and 10 peaks exceeded the 80%
bound. Poulson and Dowling interpreted this
as convincing evidence for long cycles.
However, they did not mention that these
numbers of significant peaks could also have
occurred due to sampling fluctuations, even if
their series had been a set of 25 independent
white noise processes. With white noise the
spectrum estimate at each frequency has
about a .05 (.10) probability of exceeding the
90% (80%) confidence interval.’® Thus, with
five point estimates in the long cycle range for
25 data series we would expect roughly .05 x

5 x 25 = 6.25 points to exceed the 90%

confidence band and .10 x 5 x 25 =125 to
exceed the 80% bound. This is similar to the
Poulson and Dowling finding.

But an even more fundamental objection
applies to the claim that long cycles are
evidenced by counting peaks exceeding some
X% confidence bound about the average spec-
tral height. Had growth rates followed a
simple, non-cyclical first-order process Alog
Y, = cAlog Y, | + u, with 0 < ¢ < |, then the
growth rate spectrum would have had more

*Their earlier 1971 study contained similar results.

*More than five percent of the points tend to lie above
the 90% interval because asympiotic, rather than smali-
sample, confidence formulas are used, the random
process investigated may not be normally distributed, and
the spectrum estimates are only approximately chi-
square [Fishman, pp. 102-06]. But, countering these
factors, Parzen smoothing causes two adjacent outliers to
appear as one. Adjacent outliers are more frequent the
greater is M and the lower the confidence bounds.

power at the lower frequencies corresponding
to the long cycle wavelengths [Fishman}.
Then sampling variation in the estimated
spectrum about its true value could cause
some peaks in the low frequency range, and
these peaks could exceed the, say, 90% confi-
dence bound placed about the spectrum aver-
age. The bounds test assumes that A log Y, is
a white noise process with a flat spectrum, but
this assumption should itself be tested before
applying the bounds test. Unfortunately,
neither Harkness nor Poulson and Dowling
report their spectral estimates at all frequen-
cies so we cannot test their spectra for flat-
ness.®

Clearer evidence on the true shape of the
growth rate spectra appears in Howrey’s 1968
study. He graphs spectral power for all
frequencies, displaying 13 spectra based on
19691955 annual data. Apart from the irev-
itable fiuctuations, three spectra tend to slope
mildly upward as frequency increases (Net
National Product, pig iron, and consamers
semi-durables), three slope mildly downward
(consumer durables, gross capital formation,
and gross nonfarm residential construction),
and seven appear to be basically flat.” Inter-
estingly enough, the series with downward
sloping spectra (ie., more power at lower

*The recent studies of Rostow and Forrester cannot
settle this question either because neither uses spectral
methods. Instead, both employ the questionable method
of implicitly eliminating ripples and focussing on the
remaining major peaks in their data series. Rostow uses
historical data [rom real ecanomies. Forrester analyses
simulated time series data from an a priori model which
seems to contain a hierarchy of lagged (or weighted
moving-average) relationships linking consumer spend-
ing to desired capital in the capital goods industry. Such
hierarchies tend to create long waves [Howrey, 1968,
1971].

"This even distribution of spectrum slopes about the
‘zero-slope (white noise) case is perhaps why, over 13
spectra estimated at 30 frequencies, only 10 peaks
exceeded the 95% confidence bound about their respec-
tive spectrum average (we would expect 13 x 30 x
(1.00 — .95)/2 = 9.75 peaks to occur by chance even if
all 13 series were independent white noise processes) and
why the 10 peaks did not bunch in any particular
frequency range.
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frequencies) have long been thought to
contain fong cycles.?

Cycles or Random Fluctuations?

Are seemingly significant spectral peaks in
the long cycle frequencies due to sampling
fluctuations of mildly downward sloping spec-
tra (associated with mildly correiated growth
rates)? To answer this question we computed
spectra for annual Gross National Product,

Employment, Gross Capital Formation, and

Residential Construction (all in real terms).?
GNP and Employment were chosen because
they are importani summary measures of
economic activity; GCF and RC were picked
because they are widely believed to contain
cycles, if not long waves.'®

The four spectra are evident in Table I. To
test peaks versus a flat (white noise) spectrum
we compare peaks to the spectral average.
Only RC has a 90% (and 95%) significant
peak in the “long™ cycle range (at 12 years).
Two other 90% significant peaks appear: in
GNP (7-year waves) and GCF (5-year
waves). These three peaks are less than we
would expect to appear by chance if we were
viewing the spectra of four independent white
noise processes estimated at 24 frequencies

*Cargill found 14 peaks that were 95% significant, in
the 10-20 year cycle range, in 43 constructicn series.
However, the confidence formulas are questionable when
the ratio of observations to lags is less than 3.0 [Fish-
man|, and this was the case with 33 of the 43 series
examined. Furthermore, only 17 of the 43 series are
reasonably independent (not major subcemponents or
merely price-deflated versions of others). Only three 95%
peaks appear in these 17 spectra, while two would be
expected even if all 17 series had been independent white
noise processes.

*The 80-year time pericd examined, 1889-1969, is a
compromisc. Earlier less reliable data are omitted.
Although they are alleged to exhibit long waves it is
unlikely any such waves would be obliterated completely
during 1889-1969. We stop at 1969 because later data
were not used in the studies we review in this paper.

YIn fact, Forrester helieves in long waves because he
found 50-year intervals between major peaks in the
capital goods output of his simulated model.

(four of them in the long cycle range): the
expected number of 90% peaks would be 4 x
24 x (1.00 — 90)/2 = 4.8. But the GNP,
GCF and RC spectra in Table 1 do not appear
to be flat. In fact, the estimated spectra seem
to rise, and then fall, as cycle length
decreases. To some extent, however, this
undulation may be due to the Parzen weights
which were used to smooth the spectrum prior
to estimation. These weights impart correla-
tions between spectrum estimates at adjacent
frequencies in such a way that the random
sampling fluctuations of even a white noise
process will be transformed into a second-
order process across the set of frequencies
estimated, from lowest to highest.'' Thus, the
spectrum estimates ol Table 1 should be
transformed by this process prior to testing
the spectrum for flatness.

Denating the transformed spectral esfi-
mates at frequency band / by f7, we regress
them on band 7 using the linear model f7 =

o + b1 i + v, where b} and b} are constants
and v; is assumed to be a random component
representing sampling fluctuations. Estimates
of by and b} can be re-transformed to obtain
efficient estimates of b, and &, in the original
model f; = by + b, i, and thus used to compute
a f; value at band 7 for comparison with any
peak value at that band revealed by Table 1.
For example, if b{ is negative then so is b, and
the spectrum f; = by + b, i slopes downward
(decreases as frequency increases).

Panel 1 of Table 2 shows that 5] is signifi-
cantly negative for GNP and RC. The spec-
tral peak in GNP (in Table 1) is not signifi-
cant when compared to the computed spec-
trum (b, + b, i) at the same frequency, but
the peaks in the RC and GCF spectra retain
their significance.”” However, only the RC

*'See footaote three of this paper.

“The peaks also remain sigaificantly above the
computed spectrum when the fatter is estimated by the
flexible form log f; = by + b, cos (b,/) which is a linear
approximation to f; = k/{1 + ¢ — 2¢ cos(by)), the
spectrum of a first-order process in the growth rates.
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TABLE 1: United States Growth Rate Spectra, 1889-1969

Cycle Frequency
Length fin w/24) GNP GCF EMPLMT RC

—_ ¢ 3301079 04 (1074 21(107%) 03 (107

48.0 1 42 05 23 05

24.0 2 66 09 30 .14

16.0 3 .84 17 34 .29

12.0 4 .83 24 28 .35%¢
9.6 5 .87 23 19 27
8.0 5 1.03 16 .22 17
6.9 7 1.10° 20 33 14
6.0 8 96 38 .33 13
5.3 9 6i .50 27 12
48 10 35 39 A7 10
4.4 11 .32 .18 A2 08
40 12 40 .09 13 .06
3.7 13 .56 13 23 .08
3.4 14 68 .20 32 10
32 15 62 24 27 1l
3.0 16 .52 22 16 10
2.8 17 48 16 12 07
2.7 18 .37 10 10 07
2.5 19 .27 a1 08 09
2.4 20 .36 18 .10 .10
23 21 50 23 16 10
2.2 22 57 .20 21 09
2.1 23 55 13 .23 09
2.0 24 .52 .09 22 10

a: 90 percent significant.
b: 95 percent significant.

Source: U.S. Department of Commerce, Long Term Economic Growth, 1860-1963, 1966, updates from Survey

of Current Business.

peak is in the long-wave region, and then just
barely because it indicates a 12-year
construction cycle.

In summary, our results for the U.S. show
that (a) whatever the behavior of their

components, the major macroeconomic time
series GNP, GCF and Employment exhibit no
long waves, (b) GNP does not exhibit signifi-
cant short waves, when a correlated growth
rate model is posed as the alternative hypoth-

Table 2:  Tests for White Noise Spectra

Gross National Gross Capital Residential
Model Praduct Formation Construction Employment

fi = by + bii R

b} —0.68 ~0.21 -0.22 —0.14
Stand. Error (b) 0.30 0.21 0.10 0.16
Durbin-Watson 1.533 1.2 1.30 1.51
fi—by+ byi

by 57 19 20 i2

b, -2.0 —0.6 —0.4 —0.65
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esis (rather than a white noise model},” (¢)
the short 5-year wave in GCF could be real
but could also be due to chance, (d) the
12-year wave in RC might also be due to
chance, but it may well be the exception that
tests the simple rule that long waves are
merely sampling fluctuations of uncorrelated,
or mildly correlated, growth rate processes.

“McCuiloch found no second-order process in annual
U.S. growth rates, based on regressions of the rates on
their lagged values. However, his procedure did not bar
the possibility of lower (or higher) order processes.
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