Social Sensitivity and Criminal Behavior: A Theoretical Approach

ELI SAGI AND JIMMY WEINBLATT*

Economic theory analyzes criminal behavior as a problem of rational choice in allocating time between "riskless" legal and risky illegal activities. There is agreement in the literature about the existence and possible effect of non-pecuniary consequences of illegal activity (Palmer (1976)). However, most texts (Becker, 1968; Ehrlich, 1973; Spigset, 1973 and others) bypass the issue by introducing a monetary equivalent of non-pecuniary effects. A systematic analysis of their effects requires their explicit introduction into utility functions. (a) Block and Heincke (1975) who analyze what they call "ethical costs." Another way to view non-pecuniary attributes, which is the one adopted in this paper, is to treat them as two possible variables of dichotomous nature: (1) the one-time decision of becoming involved in criminal activity; and (2) the consequence of being apprehended or not.1

We concentrate on the individual's moral and social sensitivity to participation in criminal activity.

I. The Model

Assume that the individual has a utility function U of the following type:

\[U = U(X, S, M) \quad (1) \]

where:

- \(X \) — total income of the individual.
- \(C \) — denotes number of criminal offenses committed. \(C \leq C \), where \(C \) stands for an exogenous constraint on the number of offenses.
- \(S \) — denotes the number of apprehensions and convictions. \(S \) is introduced into the utility function to represent the social sensitivity of the individual in addition to the possible disability caused by being punished.
- \(M \) — is a dichotomous variable having a value 0 or 1.
- \(M = 0 \) implies the individual does not commit any crime.
- \(M = 1 \) implies that the individual commits at least one crime.

Thus

\[M = M(C) \quad \text{where} \]

\[M(C) = \begin{cases} 0 & \text{when } C = 0 \\ 1 & \text{when } C > 0 \end{cases} \]

\(M \) is introduced to the utility function to represent the individual's moral compromise in committing the first crime. The arguments in the utility functions \(U(X, S, M) \) depend on the actual number of committed crimes \(C \) which is not determined directly by the individual. \(C \) is a stochastic variable whose distribution is determined by \(C \), the number of crimes he intends to commit and by \(P \), the probability of being apprehended in every
defence, P_2 is assumed to be constant for a given number of apprehensions (S). Since C is a stochastic variable, the optimal behavior of the individual is assumed to be derived from the maximization of his expected utility:

$$\text{Max} \left(\sum U(X(C), M(C), S(C)) \right)$$

(1)

To focus attention on the psycho-sociological aspects of criminal behavior, we start with an individual who has not committed any crime. He can remain law abiding or plan a series of crimes C. The following utility function can thus be formulated:

$$U(X(C), S(C), M(C)) = (1 - \alpha) V(X(C))$$

(2)

where:

$$\alpha = 1 \text{ if } S = 0$$

and

$$\beta = 1 \text{ if } M = 0.$$

The special form of the utility function in (3) provides a system that is convenient for the analysis of comparative statics. α and β can be interpreted as the social and moral sensitivity coefficients respectively. $\alpha - 1$ and $\beta - 1$, means that the individual has no social and moral sensitivity. Values below 1 imply that the individual feels anxiety about his potential criminal activity and apprehension. This behavior is determined by:

$$\text{Max} \left[P(X(0)) + \sum W(C) \right]$$

where:

$$W(C) = (1 - P)^2 V(X(C)) + \alpha \beta \sum P^{C_j} (1 - P^i) V(X(j - 1))$$

(4)

Since C and C_j are discrete variables, the function W is not differentiable. Our objective is, first, to find conditions for maximum utility, and, second, to analyze the properties and implications of the optimal solution. It is more convenient to use differential calculus, and rewrite equation (4) above in its continuous form:

$$W(C) = \beta \int e^{-\alpha X} V(X(C))$$

$$+ \alpha \int_0^C P e^{-\alpha X} V(X(h)) dh$$

(5)

Maximize W with respect to C.

$$\frac{dW}{dC} = \beta \left[-P e^{-\alpha X} + \alpha e^{-\alpha X} V_x + \beta \alpha e^{-\alpha X} V_x X_v \right]$$

(5)

where:

$$V_x = \frac{\delta V}{\delta X}$$

$$X_v = \frac{\delta X}{\delta C}$$

V and V_x are evaluated at the point $X(C)$, and X_v is evaluated at the point C. From equation (5) we get the following first order condition:

$$P(1 - \alpha) V_x V = \beta e^{-\alpha X} V_x X_v$$

Since $e^{-\alpha X}$ is positive for any finite value of C, we assume $\beta > 0$, thus:

$$P(1 - \alpha) V_x V = \beta e^{-\alpha X} V_x$$

(6)

The left hand side of equation (6) represents the expected loss of utility, as a result of possible apprehension from committing one additional crime. The right hand side represents the additional utility of one extra crime if not apprehended. Equation (6) has the same meaning as equation (5), except that expected marginal utilities are conditional upon the non-apprehension of the individual up to the point C.5

In the appendix, we show that under certain conditions, the discrete model obtains the same results as the continuous model.

5Note that $e^{-\alpha X} \int P e^{-\alpha X} dh = 1$, i.e., the sum of probabilities of all possible events is one.
as that obtained at point B. Thus, \(X_0 - X \) is the additional legitimate income which would prevent the individual from committing crimes. \(X^* - X \) is the amount of income he is willing to forfeit in order to avoid the consequences of illegal activity. Recalling that \(C_1^* \) is exogenously constrained by \(C \) (thus \(X = X^* (C) \)), we can interpret \(X - X_0 \), in Figure 2 as the maximum amount that the criminal is willing to sacrifice in order to ensure that he is not arrested, e.g., by paying bribes to the chief of the police.

II. Comparative Statics

A change in \(\alpha \)

The parameter \(\alpha \) has an important role in determining \(C^* \) for an individual. Bearing in mind that \(\alpha \) represents the social sensitivity of a potential criminal, one can easily see from equation (6) that the greater \(\alpha \) is (the less the social sensitivity) the larger \(C^* \) is. This relationship is presented in Figure 3.

Each Y curve in Figure 3 is defined for a different level of \(\alpha \). The higher the level of \(\alpha \) the lower the level of the Y curve, hence the larger number of planned crimes \(C_1^* \). For some low enough \(\alpha \), \(\alpha = \alpha_0 \), the Y curve will be of the type \(Y^0 \), i.e., it will intersect \(Z \) at \(C_1^* = 0 \). If the actual social sensitivity of an individual is high enough so that the \(\alpha = \alpha_0 \) he will not commit any crime. The number of planned crimes is limited by \(C_1^* \), there exists some \(\alpha \) for which \(C^* = C \). Thus, if the individual is sufficiently socially insensitive so that \(\alpha = \alpha \) then \(C^* = C \), which is a corner solution. If an individual is absolutely insensitive (\(\alpha = 1 \)), the Y curve will overlap the horizontal axis, and \(C^* = 0 \) but the actual number of planned crimes will still be \(C \).

A comprehensive view of the above arguments is provided in Figure 4. The curve denoted by \(M(\alpha) \) in quadrant I is the locus of optimal points for all \(\alpha \)'s. In quadrant III we measure the relationship between \(C^* \) and \(\alpha \). Keeping in mind that the individual always has the option of being law abiding, then if the maximum expected utility he obtains for a given \(\alpha \) falls short of \(V(X_0) \) (\(X_0 \) being the legitimate income), he will remain law abiding. Hence, point B represents a "break-even point" and there is an \(\alpha_0 \) which generates this optimal level of criminal activity. For any \(\alpha < \alpha_0 \), ceteris paribus, \(C_1^* > 0 \). The only relevant range of the curve \(C^*(\alpha) \) in quadrant III is between points R and S.

A change in \(\beta \)

The parameter \(\beta \) measures the moral sensitivity of an individual; it reflects the "conscience barrier" against committing a crime. In equation (4), \(\beta \) appears as a constant multiplier and does not affect \(C_1^* \) which maximizes \(W \). In quadrant III of Figure 4, the curve \(C^*(\alpha) \) is not affected by a varying \(\beta \).

However the level of \(M(\alpha) \) in quadrant I is a function of \(\beta \), and shifts vertically by the same proportion as the change of \(\beta \). This changes the "break-even point" level of \(\alpha = \alpha_0 \). For example, if \(\beta \) increases to \(\beta' \) (the individual is less morally sensitive), curves \(\beta V(X) \) and \(M(\alpha) \) in Figure 4 shift upwards to levels \(\beta' V(X) \) and \(M(\alpha) \) respectively. Point B shifts to \(B' \) and \(\alpha_0 \) (quadrant III) falls to \(\alpha_0' \).

In the general case where \(W \) is not proportional to \(\beta \), the solution of \(\max_{\alpha} W(C) \) is affected by the argument of moral sensitivity.

A change of \(X_0 \)

\(X_0 \) denotes the individual's income from legitimate activities. The individual's reaction to changes in \(X_0 \) has socio-economic implications on whether and to what extent one is willing to participate in crime as he becomes wealthier. There are two aspects to this problem: (1) How is \(C^* \) affected? and (2) How is the expected income at the optimal level \(C^* \) affected?

In order to identify the reaction of \(C^* \) to a
change of X, we differentiate both sides of the first order condition (equation (6)), and rearrange it:

$$\begin{align*}
(P - 1) - \alpha X = - &\left(\frac{\partial \mathcal{C}}{\partial x} \right) X + \mathcal{C}X \frac{\partial \mathcal{C}}{\partial x} \\
&+ \mathcal{C}X \frac{\partial \mathcal{C}}{\partial x} \frac{\partial \mathcal{C}}{\partial x} \\
&+ \left(\frac{\partial \mathcal{C}}{\partial x} \right) X_0
\end{align*}$$ (9)

The expression in parentheses on the left hand side is obviously positive. The second order condition assures that the expression in the parentheses on the right hand side is negative. Thus, if the first and second order conditions for the maximum are met, $(dC/dx) < 0$. This same change can be seen using the diagram in Figure 1: A rise in X, the Y curve shifts upward, and the Z curve shifts downwards, resulting in a decrease of C. The above argument implies that the greater the legitimate income, the fewer the number of crimes one is likely to plan to commit.

It has been established that a higher X, induces a lower C, that is, the income generated by illegal activity decreases, while the income generated by legal activity increases. It remains to see what happens to the total income $X(C)$: Since X is a function of C, then:

$$dX(C) = \frac{dX}{dC} dC + X_0 dC$$ (10)

Substituting (10) into (9) and rearranging yields:

$$\begin{align*}
(P - 1) - \alpha X = - &\left(\frac{\partial \mathcal{C}}{\partial x} \right) X + \mathcal{C}X \frac{\partial \mathcal{C}}{\partial x} \\
&+ \left(\frac{dX}{dC} \right) + \mathcal{C}X \frac{\partial \mathcal{C}}{\partial x} \frac{\partial \mathcal{C}}{\partial x} \\
&+ \left(\frac{\partial \mathcal{C}}{\partial x} \right) X_0
\end{align*}$$ (11)

Again, the expression in the parentheses on the left hand side is positive, hence:

$$\text{Sign} \left(\frac{dX}{dC} \right) = \text{Sign} (X_0).$$

and

$$\text{Sign} \left(\frac{dX(C)}{dC} \right) = - \text{Sign} (X_0).$$

This implies that if $X_0 < 0$, (constant **marginal revenue** from criminal activity), the individual will end up with the same expected income in spite of a possible change in X_0.

A Change of P

A rise of the probability of apprehension P, will decrease the number of planned crimes. This can be easily seen from Figure 1. A rise in P generates an upward shift of curve Y, which lowers C. In addition a rise in P generates an increase of νP, the breakdown point. This implies that the higher the probability of apprehension, the lower the social sensitivity required to become involved in criminal activity.

Dynamic Aspects

The analysis up to this point was based on the assumption that the individual has not yet committed any crime. If the individual decides to become a criminal, he plans to commit C crimes within a planned horizon T. If he is not apprehended, during T, he will reconsider his behavior in the next period. Unless an exogenous change occurs, he will probably have the same C in the next period. However, if he is apprehended during period T (not being able to complete C) then, after being punished, a new planning period starts, with a new set of parameters. P may now be higher since he has a police record. Conversely, P may become lower, if his jail experience improves his criminal expertise. Following the same logic we can anticipate changes of α, β, and the function $X(C)$. If the result of apprehension is that P decreases (the sensitivity increases) and P increases, **ceteris paribus**, he will commit fewer crimes in the next period, or he may even refrain from that kind of activity in the future. Nevertheless, there is a possibility that being an "ex-convict" reduces legal employment opportunities and social status, which may reduce social sensitivity and lead to a higher rate of crime in the next period.

The approach presented in this paper suggested explicitly that the behavior of a criminal in any period of time depends on his criminal history. This implies that the decision to commit crimes has a cumulative and irreversible effect.

References

Appendix

We have seen that when an individual decides to commit criminal acts he faces the following expected utility function:

$$W(C) = \left[(1 - P)^{\nu P} V(X(C)) \right]$$

$$+ aP \sum_{i=1}^{\nu} \left((1 - P)^{\nu P} V(X(C-i)) \right)$$ (A.1)

Since C_{i} is a discrete variable, W is not differentiable, therefore it obtain maximal value for the largest C_{i} for which $\Delta W/C_{i} > 0$ where:

$$\Delta W/C_{i} = W(C_{i}) - W(C_{i+1})$$

$$\Delta W(C_{i}) = ((1 - P)^{\nu P} V(C_{i}))$$

$$- (1 - P)^{\nu P} V(C_{i+1}))$$

$$+ aP ((1 - P)^{\nu P} V(C_{i}))$$ (A.2)

Define

$$\Delta V(C_{i}) = V(C_{i}) - V(C_{i+1})$$

and substituting (A.2) we get:

$$\Delta W(C_{i}) = (1 - P)^{\nu P} \Delta V(C_{i})$$

$$- V(C_{i}) + \Delta V(C_{i}) + aPV(C_{i})$$

$$\Delta W(C_{i}) = (1 - aPV(C_{i})) \geq 0$$ (A.3)

which is equivalent to the first order condition for the continuous case in equation (6).