
Y. D. Zhang, J. I. Budnick, and W. A. Hines
Department of Physics, Connecticut Advanced Technology Center for Precision Manufacturing and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269

D. P. Yang
Department of Physics, College of the Holy Cross, Worcester, Massachusetts 01610

[S0003-6951(96)00118-0]

It has come to our attention after the publication of our letter that Eq. (15) in the letter is an expression obtained by taking the outer shell (region I) of the particle as an equivalent sphere, but it is not the solution of the diffusion Eq. (8). An alternate description can be obtained by considering the gas atom diffusion into a hollow spherical shell. In this case, the f-type gas atom concentration distribution in the hollow can be obtained by solving Eq. (8) whose solution is

$$c_f(r,t) = \frac{c_{f0}R(r-R_0) + c_f(R_0)R_0(R-r)}{r(R-R_0)} + \sum_{m=1}^{\infty} \frac{c_{f0}R \cos m \pi - c_f(R_0)R_0}{\sin m \pi} \frac{m \pi (r-R_0)}{(R-R_0)^2} e^{-m^2 \pi^2 D_f/4(R-R_0)^2}.$$ (1)

In the case where $D_f \approx D_t$, the f-type atoms actually reach the steady distribution in region I for each R_0, i.e.,

$$C_f(r,t) = \frac{c_{f0}R(r-R_0) + c_f(R_0)R_0(R-r)}{r(R-R_0)}.$$ (2)

For the nitrogenation of R_2Fe_{17} systems, since $c_{f0} \ll c_{t0}$, the possible difference between the f-type N atom distribution profiles in the nitrided region is experimentally unobservable. Therefore, whether using Eq. (15) given in our letter or using Eq. (1) cited here will not affect the result. However, in dealing with other trapping diffusion problems, Eq. (1) may be a more reasonable description.

1 R. M. Barrer, Philos. Mag. 35, 802 (1944).

Erratum: “Optical investigation of quaternary GaInAsSb/AlGaAsSb strained multiple quantum wells” [Appl. Phys. Lett. 67, 3432 (1995)]

W. Z. Shen, a) S. C. Shen, and W. G. Tang
CCAST (World Laboratory) P.O. Box 8730, Beijing 100080, and Center of Advanced Science and Technology of Microstructures, Nanjing 210008, People’s Republic of China

Y. Zhao and A. Z. Li
Department of Functional Materials for Informatics, Shanghai Institute of Metallurgy, Shanghai 200050, People’s Republic of China

[S0003-6951(96)00218-7]

An error appears in the list of addresses. It should read as follows:

W. Z. Shen, a) S. C. Shen, and W. G. Tang
CCAST (World Laboratory) P.O. Box 8730, Beijing 100080
National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Shanghai 200083, b)
and Center of Advanced Science and Technology of Microstructures, Nanjing 210008, People’s Republic of China

Y. Zhao and A. Z. Li
Department of Functional Materials for Informatics, Shanghai Institute of Metallurgy, Shanghai 200050, People’s Republic of China

a)Electronic mail: nlip@fudan.ihep.ac.cn
b)Mailing address.