Oxygen Transport by the Blood -- SOLUTION

Bio390 Animal Physiology revised 12/4/17

Given the following:

For an HCT = 40 **bound** O₂ at saturation = 20 ml/dl P_{aO2} =100 torr P_{vO2} =25 torr Solubility of O₂ = 0.01 ml O₂ /torr * dl blood HCT = 50 arterial pH = 7.4 RA pH = 7.2

(a) Find the oxygen content of arterial blood.

From the graph, simply go from the P_{aO2} which in this case is 100 up to the arterial blood curve, here the pH = 7.4 curve. The blood is saturated. Now we need the O₂ carrying capacity of this person's blood. Since their hct = 50%, then their blood can carry 50/40*20ml O₂ / dl blood = 25 ml O₂ / dl blood bound to Hb when the blood is saturated (which it is). But there is also dissolved O_2 – the amount is simply the P_{O2} times the solubility, so 100 torr * 0.01 mL O_2 / (dL * torr) = 1 mL O_2

Thus: $25 + 1 = 26 \text{ mL } O_2 - / \text{ dL}$

(b) Find the <u>total</u> oxygen content of mixed venous (RA) blood. Why is RA blood termed "mixed venous"?

Same method as before except $P_{aO2} = 25$ torr and the pH = 7.2. Using the graph, this gives a % sat of 20%. Thus, the amount of O₂ carried is:

 $20/100 * 25 \text{ ml } O_2 / \text{ dl blood} = 5 \text{ ml } O_2 / \text{ dl blood}$

Likewise, the amount in solution is 25 torr * 0.01 mL O_2 / (dL * torr) = 0.25 mL O_2 / dL

and the total in the RA is bound plus dissolved = $5.25 \text{ mL } O_2 / \text{ dL}$

(c) Find the total AV (arterial to venous) difference in oxygen content in ml O₂ per 100 ml blood.

This is the difference between the results in (a) and (b) which is the difference in bound O_2 plus the difference in the dissolved O_2 (see (e) below).

 Δ Dissolved O₂ = α (P_{aO2} - P_{vO2}) = 0.01 ml O₂ /torr * dl blood * (100 - 25 torr) = 0.75 ml O₂ / dl blood

 Δ bound O₂ = 25 - 5 ml O₂ / dl = 20 ml O₂ / dl

Thus, A-V O₂ is 20 + 0.75 ml O₂ / dl = 20.75 ml O₂ / dl

OR using the numbers in (a) and (b) it is the A-V (i.e., RA) difference in O_2 content = 26.00-5.25 = 20.75 mL O_2 / dL

(d) Compare the value you found for (c) with what would have happened in the absence of a Bohr effect -- *i.e.*, if there had been no change in affinity due to a decrease in pH.

The Δ Dissolved O₂ will be the same as the example, as will be the arterial bound O₂. However, if there is no Bohr effect we will continue to use the *p*H = 7.4 graph to get the % sat of venous blood at 25 torr. This value is about 45%. Thus,

 Δ Bound O_2 = 25 ml O_2 / dl blood * (100 - 45)/100 = 13.75 ml O_2 / dl blood

which is 13.75 / 20.75 = 0.66 as much O_2 as was delivered from bound as with the Bohr effect. Total O_2 delivered in this case is:

 Δ Bound + Δ Dissolved = 13.75 + 0.75 = **14.5 ml O**₂ / **dl blood** which is 14.5 / 20.75*100 =**70%** of what was delivered with the Bohr effect.

(e) Write a general mathematical expression that would allow you to solve for AV difference in oxygen content using the variables you used in parts (a) to (d) above.

 O_2 delivered = Δ Bound O_2 + Δ Dissolved $_{O2}$

= O₂ capacity *(%SAT arterial - % SAT venous)/100 + α (P_{aO2} - P_{vO2})

(f) Assume that the person lost 50% of her/his ability to carry oxygen bound to hemoglobin. If the person still needs the same amount of O_2 to live, what would happen to the following (make qualitative predictions (up, down, no change) only).

(i) <u>A-V saturation</u>: increase this difference, probably by decreasing decreasing venous % saturation (removal of more O_2 from blood in tissues) while maintaining P_{aO2} . Lactic

acid production would hopefully not be a major "aid" in unloading bound O_2 .

(ii) <u>A-V Dissolved O₂</u>: As above, decrease PvO2 – note again that this will also result in a decrease in venous % saturation – the change in P_{VO2} would preceed any change in % venous saturation.

(iii) <u>Cardiac Output</u>: Increase cardiac output -- delivery of more volume of blood per time could easily compensate for the reduced amount of O_2 available in each volume of blood that is delivered.

(iv) <u>Anything else</u>?: intervention -- breathe gas with a high P_{O2} .