Animal Physiology
revised 12/4/17

Given the following:

For an HCT $=40$ bound O_{2} at saturation $=20 \mathrm{ml} / \mathrm{dl}$
$P_{a \mathrm{O} 2}=100$ torr
$P_{\text {vo2 }}=25$ torr
Solubility of $\mathrm{O}_{2}=0.01 \mathrm{ml} \mathrm{O}_{2} /$ torr * dl blood
HCT = 50
arterial $\mathrm{pH}=7.4$
RA pH $=7.2$

Partial Pressure of
Oxygen
(a) Find the oxygen content of arterial blood.

From the graph, simply go from the $P_{a 02}$ which in this case is 100 up to the arterial blood curve, here the $\mathrm{pH}=7.4$ curve. The blood is saturated. Now we need the O_{2} carrying capacity of this person's blood. Since their hct $=50 \%$, then their blood can carry $50 / 40^{*} 20 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}$ blood $=25 \mathrm{ml} \mathrm{O}_{2}$ / dl blood bound to Hb when the blood is saturated (which it is).

But there is also dissolved O_{2} - the amount is simply the $P_{\mathrm{O} 2}$ times the solubility, so 100 torr * $0.01 \mathrm{~mL} \mathrm{O}_{2} /(\mathrm{dL}$ * torr) $=1$ mL O 2

Thus: $25 \mathbf{+ 1} \mathbf{~ = ~} 26 \mathrm{~mL} \mathrm{O}^{-}$/ dL
(b) Find the total oxygen content of mixed venous (RA) blood. Why is RA blood termed "mixed venous"?

Same method as before except $P_{\mathrm{aO} 2}=25$ torr and the $\mathrm{pH}=$ 7.2. Using the graph, this gives a \% sat of 20%. Thus, the amount of O_{2} carried is:

20/100 * $25 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}$ blood $=5 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}$ blood
Likewise, the amount in solution is
25 torr * $0.01 \mathrm{~mL} \mathrm{O}_{2} /$ (dL * torr) $=0.25 \mathrm{~mL} \mathrm{O}_{2} / \mathrm{dL}$
and the total in the RA is bound plus dissolved

$=5.25 \mathrm{~mL} \mathrm{O}_{2} / \mathrm{dL}$

(c) Find the total AV (arterial to venous) difference in oxygen content in ml_{2} per 100 ml blood.

This is the difference between the results in (a) and (b) which is the difference in bound O_{2} plus the difference in the dissolved O_{2} (see (e) below).
Δ Dissolved $\mathrm{O}_{2}=\alpha\left(P_{\mathrm{aO} 2}-\mathrm{P}_{\mathrm{voz}}\right)=0.01 \mathrm{ml} \mathrm{O}_{2} /$ torr ${ }^{*}$ dl blood * (100-25 torr) $=0.75 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}$ blood
Δ bound $\mathrm{O}_{2}=25-5 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}=20 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}$
Thus, $A-\mathrm{VO}_{2}$ is $20+0.75 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}=\mathbf{2 0 . 7 5} \mathbf{~ m l ~ O} \mathbf{O}_{2} / \mathrm{dl}$

OR using the numbers in (a) and (b) it is the A-V (i.e., $R A)$ difference in O_{2} content $=26.00-5.25=20.75 \mathrm{~mL} \mathrm{O} ~ / ~ / ~ d L ~$
 (d) Compare the value you found for (c) with what would have happened in the absence of a Bohr effect -- i.e., if there had been no change in affinity due to a decrease in pH .

The Δ Dissolved O_{2} will be the same as the example, as will be the arterial bound O_{2}. However, if there is no Bohr effect we will continue to use the $\mathrm{pH}=7.4$ graph to get the \% sat of venous blood at 25 torr. This value is about 45%. Thus,
Δ Bound $\mathrm{O}_{2}=25 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}$ blood * (100-45)/100 = 13.75 ml $\mathrm{O}_{2} /$ dl blood
which is $13.75 / 20.75=0.66$ as much O_{2} as was delivered from bound as with the Bohr effect.
Total O_{2} delivered in this case is:
Δ Bound $+\Delta$ Dissolved $=13.75+0.75=14.5 \mathbf{~ m l ~ O} / \mathbf{d l}$ blood which is $14.5 / 20.75^{*} 100=70 \%$ of what was delivered with the Bohr effect.
(e) Write a general mathematical expression that would allow you to solve for AV difference in oxygen content using the variables you used in parts (a) to (d) above.
O_{2} delivered $=\Delta$ Bound $\mathrm{O}_{2}+\Delta$ Dissolved O_{2}

$=\mathrm{O}_{2}$ capacity *(\%SAT arterial - \% SAT venous)/100 $+\alpha$ ($\mathrm{PaO}_{\mathrm{aO}}-\mathrm{P}_{\mathrm{voz}}$)

(f) Assume that the person lost 50% of her/his ability to carry oxygen bound to hemoglobin. If the person still needs the same amount of O_{2} to live, what would happen to the following (make qualitative predictions (up, down, no change) only).
(i) $\mathrm{A}-\mathrm{V}$ saturation: increase this difference, probably by decreasing decreasing venous \% saturation (removal of more O_{2} from blood in tissues) while maintaining $\mathrm{P}_{\mathrm{a} O 2}$. Lactic
acid production would hopefully not be a major "aid" in unloading bound O_{2}.
(ii) A-V Dissolved O_{2} : As above, decrease PvO2 - note again that this will also result in a decrease in venous \% saturation - the change in $\mathrm{P}_{\mathrm{voz}}$ would preceed any change in \% venous saturation.
(iii) Cardiac Output: Increase cardiac output -- delivery of more volume of blood per time could easily compensate for the reduced amount of O_{2} available in each volume of blood that is delivered.
(iv) Anything else?: intervention -- breathe gas with a high $P_{\mathrm{O} 2}$.

