Problem: Blood Gases and Dead Spacei Arterial blood of several individuals was analyzed for O_2 and CO_2 gas tensions (P_{aO2} and P_{aCO2} , respectively), O_2 concentration (C_{aO2} in $\frac{cc\ O_2}{100\ cc\ blood}$), and percent O_2 saturation (S_{aO2}). | INDIVIDUAL | P _{aO2} | P _{aCO2} | C _{aO2} | S _{aO2} | |------------|------------------|-------------------|------------------|------------------| | Α | 100 | 40 | 20 | 97 | | В | 100 | 40 | 10 | 97 | | С | 120 | 20 | 20 | 98 | | D | 600 | 40 | 22 | 100 | | E | 45 | 35 | 20 | 90 | Assume individual <u>A is a normal human breathing room air at sea level</u>. Indicate what might be responsible for the blood gas values in the four other individuals. B <u>ANEMIA</u>: the P_{AO2} is normal but the blood only contains half the O_2 that would be expected in a normal person yet the blood is still nearly saturated. One alternative is CO poisoning. C HYPERVENTILATION (HYPERNEA): P_{AO2} is elevated while P_{aCO2} is depressed; total O_2 carried is slightly up. D BREATHING AIR ENRICHED IN O_2 or breathing compressed air at about 4 ATM (100' sea water) these are the only ways one could get such a high P_{AO2} . Note that the P_{aCO2} is low. 1 $^{^{}m i}$ thanks to Dr. J.F. Anderson, Dept Zoology, Univ of Florida, Gainesville for the original idea for this problem E <u>HIGH ALTITUDE</u>: lowered ambient P_{02} results in lowered P_{AO2} . Subjects at high altitude typically hyperventilate slightly; notice that P_{aCO2} is lower than normal. Also notice that even thought the P_{AO2} has decreased greatly, the blood still carries an amount of air similar to that at sea level. However, notice it is only 90% saturated. The body has compensated by raising the hct (not shown but the only explanation for the normal CaO2 and, of course, it is the normal acclimation result). Estimate V_D given the following information. Do <u>no</u>t convert to STPD. $$V_E$$: 0.5 liters F_{ECO2} : 0.035 F_{ACO2} : 0.054 breathing rate: $\frac{15}{min}$ Recall that $$V_D = V_E - V_A$$ and that $\dot{V}_A = \dot{V}_{CO_2} / F_{ACO_2}$ and that $V_A = \dot{V}_A / f$ Solving first for alveolar minute ventilation, we get: $$\dot{V}_A = \dot{V}_{\rm CO_2}/F_{\rm ACO2} = 0.5$$ L/ b * 15 b/min * 0.035 / 0.054 = 4.86 L/m and for V_A = (4.86 L / min) / 15 (b/ min) = 0.32 Liters And finally for V_D: $$V_D = V_E - V_A = 0.5 L - 0.32 L = 0.18 L$$ Note: I could have solved this by simply calculating the volume of CO_2 expelled per breath V_{CO_2} which would have been equal to F_{ECO_2} * V_E ; I stuck with the exact form of the equation we learned in class.