Solutions to Kareiva & Marvier, Chapter 8 Conservation Biology Spring 2011

2. Take the geometric mean = lambda over the entire time was **0.9961** even though two of the three years were "good years." Note that the arithmetic average would have been a bit higher, 0.9967

small will die? = 1-lx - promotion chance = 1-.6-.15=0.25 small tto large in two years? = 0.15*0.1=0.015 mx for current small over next two years?

- = 1-(Chance survive this year as small *chance of surrviv e next year as small or med + chance of becoming med for next year * chance of suviving as med or being large)
- = 1-(0.6 * 0.75+0.15*0.6)
- = 1-(0.45+0.09) = 1-0.54
- = 0.46

Matrix: green is b_x , yellow is l_x and orange is chance of remaining alive in same stage.

larvae	sm	med	large		N
	0	0	0	27	N (t, larvae)
	0.7	0.6	0	0	N (t, sm)
	0	0.15	0.5	0	N (t, Imed)
	0	0	0.1	0.2	N (t, large)
	0	0	0	0	

Thus, notice that the number of larvae at time t+1 = N(t,l)*0+N(t,s)*0+N(t,med)*0+N(0,Large)*27The number of small abalone at time t=1 = N(t,l)*0.7+N(t,s)*0.6+N(t,med)*0+N(0,Large)*0The number of medium abalone at time t=1 = N(t,l)*0+N(t,s)*0.15+N(t,med)*0.5+N(0,Large)*0 etc